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Thioenoates are found to participate in highly chemoselective catalytic crossed Michael cycloisomerization with appendant aryl ketone and
enoate partners to afford cyclopentene and cyclohexene products. This methodology has enabled a concise total synthesis of the potent
molluscicide ()-ricciocarpin A.

Catalytic cycloisomerizations represent an important classthe electrophilicity of the reacting partners, the highly
of atom economical transformatidrRecently, the present chemoselective “crossed” cycloisomerization of nonsym-
author and Roush disclosed an intramolecular variant of the metric precursors was demonstratédzurther extension of
Rauhut—Currier reactioha phosphine-catalyzed “Michael  scope is potentially achieved by expanding the repertoire of
cycloisomerization” of tethered,3-unsaturated carbonyl reacting partners amenable to crossed cycloisomerization. In
partners A related study was subsequently reported by this account, we report the highly chemoselective crossed
Murphy? This transformation enables preparation of sub- Michael cycloisomerization of thioenoates with appendant
stituted cyclopentene and cyclohexene products under metalaryl ketone and enoate partners to afford cyclopentene and
free conditions. Remarkably, due to the exceptional sensi-cyclohexene products. This methodology has enabled a
tivity of this organocatalytic transformation with respect to concise total synthesis of the potent molluscicidal ag&i (
ricciocarpin A.

(1) For reviews, see: (a) Trost, B. Mciencel991 256 1471. (b) Trost, Impetus for these studies arose from difficulties encoun-
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Basavaiah, D.; Gowriswari, V. V. L.; Bharathi, T. Rletrahedron Lett. isomerizatiort® substrateda and2a appear to be inert with
1987, 28, 4591. (d) Drewes, S. E.; Emslie, N. D.; Karodia, Synth. respect to trialkylphosphine addition under a range of
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carbonyl compound, bis(thioenoates) were anticipated to befuranosesquiterpene lactone ricciocarpin A. Ricciocarpin A,
a more reactive substrate classndeed, the enhanced isolated from the liverworRicciocarpos natans, exhibits
performance of thioenoates in MoritBaylis—Hillman-type potent molluscicidal activity against the water sribm-
cyclizations has been noted by KetKo test this hypothesis,  phalaria glabrata a vector of schistosomiasisAmong
bis(thioenoatesjaand4awere prepared through exhaustive humanparasitic diseases, schistosomiasis (sometimes called
olefination of succinaldehyde and glutaraldehyde, respec-bilharziasis) ranks second behind malaria in terms of
tively, using previously reported stabilized Wittig reagehts. socioeconomic and public health importance in tropical and
Gratifyingly, upon exposure of bis(thioenoat&s and 4a subtropical areas, infecting more than 200 million people in
to catalytic trimethylphosphine at 3C in tert-butyl alcohol rural agricultural and periurban areas. Three safe, effective
solvent (0.1 M), cyclization proceeds smoothly to provide drugs are now available to those infected with schistoso-
good yields of the corresponding cyclopentene and cyclo- miasis: praziquantel, oxamniquine, and metrifonate. How-
hexene product8b and4b, respectively (Scheme %). ever, the long-term objective is to diminish the population
of the parasite vectors. Accordingly, the compound baylus-
cide (niclosamide) has been developed to kill infected water
Scheme 1. Catalytic Cycloisomerization of Bis(thioenoates)  snails® However, bayluscide is rather nonselective, having

3aand4a adverse affects on native fish, contaminating their flésh.
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Scheme 3. Retrosynthetic Analysis of Ricciocarpin A

The marked difference in reactivity between enoate and
thioenoate functional groups suggests that mixed monoenoate
monothioenoate$a and 6a may participate in catalytic
crossed Michael cycloisomerization. Indeed, upon exposure

of 5ato the same conditions employed in the cyclization of PRocat)
bis(thioenoatesBa and 4a, cycloisomerization produé&b =
is obtained in 89% yield. The isomeric materfd could

not be detected b+ NMR analysis. Analysis of the reaction
product by gas chromatography reveals thlais obtained

in 98% isomeric purity. Under identical conditions, the
homologous substrai@a provides cyclohexenéb in 82%
yield. Again, the isomeric materiélc could not be detected
by *H NMR analysis. Analysis of the reaction product by
gas chromatography reveals théth is obtained in 99%
isomeric purity (Scheme 2).
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ricciocarpin A should derive via catalytic Michael cyclo-
isomerization of an unsymmetrical bis(enone), which incor-
porates all carbons of the ricciocarpin skeleton. The indicated
boat conformation of ricciocarpin A has been established
through'H NMR and NOE difference spectroscoffy.

(6) Keck, G. E.; Welch, D. SOrg. Lett.2002,4, 3687.
(7) Keck, G. E.; Boden, E. P.; Mabury, S. A. Org. Chem1985,50,
Scheme 2. Catalytic Cycloisomerization of Mixed 709.

Monoenoate Monothioenoat&s and 6a (8) Procedure. Trimethylphosphine (20 mol %) was added to a 0.1 M
solution of substrate ir‘Bu_OH under an atmosphere of argon, and the

Oy OEt o reaction was allowed to stir at 3€ until complete. The reaction mixture
PMes (20 mol%) was subjected to rotary evaporation, and the crude residue was purified by
Ot EtS OEt silica gel chromatography to give the cyclized product.
n

tBuOH (0.1 M) (9) (a) Wurzel, G.; Becker, HPhytochemistrt99Q 29, 2565. (b) Wurzel,
30°C G.; Becker, H.; Eicher, T.; Tiefensee, Rlanta Med.1990,56, 444. (c)
5a,n= 1 n=1,89% Yield 5¢ Zinsmeister, H. D.; Becker, H.; Eicher, Angew. Chem1991,103, 134.
6a,n=2 | <sg Soggy & (10) Nabih, I.; Elwasimi, M. TJ. Pharm. Sci1968,57, 1202.
(6b-6c, 59:1) (11) Schreier, T. M.; Dawson, V. K.; Choi, Y.; Spanjers, N. J.; Boogaard,
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(12) For racemic syntheses of ricciocarpin A, see: (a) Eicher, T,
Massonne, K.; Herrmann, Meynthesid991, 1173. (b) Ihara, M.; Suzuki,
At this point, further methodological refinement was S.; Taniguchi, N.; Fukumoto, Kl. Chem. SogPerkin Trans. 11993 2251.

; ; (c) lhara, M.; Suzuki, S.; Taniguchi, N.; Fukumoto, &hem. Commun.
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A modular approach to catalytic Michael cycloisomeriza-
tion substrate§a—10abegins with the aldol condensation  gcheme 5. Phosphine-Catalyzed Michael Cycloisomerization

of 3-acetylfuran with 2,2-dimethyl-hex-5-enal to afford of Furyl Enone Containing Substratéa—10a
olefinic furyl enone7. Ozonolytic cleavage of, followed
by exposure of the resulting aldehyde to selected stabilized N Et PRa (20 Mol%)
Wittig reagents, gave the cycloisomerization substrases 1 —————  No Reaction
. . . . S R = Me, Bu
10a, which contain enoate, enal, and thioenoate moieties, T\
respectively (Scheme 4). 8a
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~ x ~ of diastereomerd.la and 11b was corroborated by NOE
/o\ /O\ /o\ difference spectroscopy. In an effort to attenuate over-
8a, 54% 9a, 63% 10a, 68% reduction, thioestetOb was converted to the corresponding

methyl esterl2. Exposure ofl2 to the aforementioned
reduction conditions provides lactongsaand11bin 77%

With compound8a—10ain hand, their ability to partici-  Yield as a 3:1 mixture of diastereomers, respectively. The
pate in phosphine-catalyzed Michael cycloisomerization was Minor, undesired lactone isoméflb may be converted to
examined. Consistent with the results pertaining to bis- 11a via saponification—Mitsunobu inversion. Conjugate
(enoa‘[es)la and 2a, exposure of monoenoate monofury| reduction of the unsaturated lactorida USing sodium
enonesa to tributyl- or trimethylphosphine under a wide borohydride in pyridin€& provides )-ricciocarpin A,
range of conditions gives only trace quantities of the identical in all respects to previously reported matetiaf:*
corresponding cycloisomerization prodwh. The related ~ Notably, the conjugate reduction diato afford ricciocarpin
monoenal monofuryl enoriaembodies a more electrophilic A is completely stereoselective (Scheme 6).
pronucleophile. Upon exposure &a to the conditions
employed in the cyclization of thioenoatéa—6a (Schemes

1 and 2), cycloisomerization produgb is obtained in 38% Scheme 6. Reductive Lactonization ofOb and 122
yield, along with products of decomposition. Conducting the o

cycloisomerization under more dilute conditions and at higher X 1

catalyst loading affords a 51% vyield of the corresponding It — - H
cycloisomerization produc®b. Finally, monothioenoate T\ = @

monofuryl enonelOawas examined. Upon exposureiiia 0 11a

to the conditions employed in the cyclization of thioenoates  a [ 135X 558! (L R
3a—6a(Schemes 1 and 2), cycloisomerization prodL@ih ' o e e e

is obtained in 32% vyield, along with recoverg@a The use

o H
of higher reaction temperatures overcomes the apparent lack o e o o
.. . . . . . H —_— {(+/-)-Ricciocarpin A
of reactivity, providing cycloisomerization produt0b in L, s
81% vyield (Scheme 5). H11a Q "
Ricciocarpin A may be derived from thioest&fb via
reductive lactonization of the keto-ester followed by conju- c aciomigon';: oﬁe(ZDSNg, (I\/)IeLQ(l)-iH ZTi%H %%"(/Z 1§b)25NgB(I3,)
ate reduction. Direct concomitant reductive lactonization =~ S€Ck7Hz0, MeOH, 25°C. (c) LIOH, 20 (4:1), 25°C.
gate : DIAD, PhsP, CHCl,, 25 °C, 80% over two steps. (e) NagH
conjugate reduction dfOb or 12 proved to be unsuccessful. pyridine, 25°C, 78%.
Therefore, reductive lactonization d0b was attempted. ’ '

Exposure of10b to the reduction conditions described by
Luché® provides lactonedlaand 11b in 55% yield as a In summary, thioenoates participate in highly chemo-

1:3 mixture of diastereomers, respectively, along with gejective catalytic crossed cycloisomerization with appendant
products of over-reduction. The stereochemical aSS|gnmentary| ketone and enoate partners to afford cyclopentene and
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